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The large-scale vortex structures under spilling and plunging breakers are investigated,
using a fully three-dimensional large-eddy simulation (LES). When an overturning jet
projecting from the crest in a breaking wave rebounds from the water surface ahead,
the vorticity becomes unstable in a saddle region of strain between the rebounding jet
and a primary spanwise vortex, resulting in spanwise undulations of the vorticity. The
undulations are amplified on a braid in this saddle region, leading to a vortex loop with
counter-rotating vorticity. This vortex loop consequently envelops adjacent primary
vortices, to form a typical rib structure. This rib component (the stretched vortex
loop) in the large-scale vortex structure, which intensifies in the strains associated
with the multiple primary vortices generated throughout the splash-up cycle, appears
to be the previously found obliquely descending eddy.

1. Introduction
When a water wave breaks, an overturning jet projects from the wave crest and

plunges onto the water surface ahead of the wave, producing a rebounding jet. The
rebounding jet jumps forward and plunges onto the water surface further ahead, in a
resultant sequence of consecutive plunging and rebounding jets of gradually decreasing
scale. This so-called splash-up cycle in a surf zone culminates in a turbulent bore,
propagating towards the shore (Peregrine 1983).

The wave shape transition during the splash-up cycle was characterized by Svendsen,
Madsen & Hansen (1978). Nadaoka, Hino & Koyano (1989) found experimentally
that plunging jets produce three-dimensional coherent structures involving large-scale
vortices, whereas the fully developed vortices in the turbulent bore have a much
smaller scale (Svendsen & Madsen 1984; Longo, Petti & Losada 2002). Particular
breaker types (spilling, plunging or collapsing) also have distinctive vortices in the
transition region and the following bore (Battjes 1988). For instance, the smaller
plunging jets in a spilling breaker consecutively spill down the front face, to form
a so-called horizontal roller featuring slowly developing spanwise vortex motion
(Kolaini & Tulin 1995).

Uni-directional non-breaking waves correspond to two-dimensional irrotational
flow in planes parallel to the direction of wave propagation, except in the vicinity
of the water surface and the bottom. A sequence of plunging jets typically
produces horizontal rollers (large-scale spanwise vortices), featuring two-dimensional
rotational motion along the wave direction. The turbulent energy and Reynolds stress
transition on the two-dimensional cross-section in the surf zone has been investigated
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Figure 1. Sketch representing evolution of vortices in an internal breaking wave.

experimentally (Ting & Kirby 1996; Cox & Kobayashi 2000), and also by numerical
simulation assuming that two-dimensional turbulence is statistically predominant
(Lin & Liu 1998; Watanabe & Saeki 2002). Svendsen (1987) maintains that under a
broken wave the spanwise (transversal) and vertical components of turbulent energy
are of the same order as, but rather smaller than, the streamwise turbulent energy (in
the direction of the wave propagation), and that the relative strength of the turbulent
energy is analogous to that of a plane wake. When an overturning jet meets the water
surface ahead, three-dimensional turbulence is initiated and intensifies in the transition
region (Watanabe & Saeki 1999). Thus the instability induced by plunging jets in a
breaking wave is essentially three-dimensional, triggering the transition to unsteady
turbulent flow via large-scale time-dependent three-dimensional vortex structures, as
the breaking wave propagates.

The instantaneous velocity field in a surf zone typically involves an unsteady parallel
shear flow towards the shore above the wave trough level, associated with the progres-
sive bore, and an offshore flow beneath. The corresponding time-averaged velocity
field is a shoreward mean flow above the trough level, and an undertow returning the
water offshore. Li & Dalrymple (1998) demonstrated that, before an incoming wave
breaks, a vortex surface in the mean parallel shear flow tends to be unstable, so that
periodic undulations of the vortex surface are produced. In the mean shear surface,
this process is analogous to Kelvin–Helmholz (K-H) instability. They concluded that
the instability induced the formation of the so-called offshore vortex train, previously
observed outside the surf zone (Matsunaga, Takehara & Awaya et al. 1988, 1994).

Instabilities occurring in stratified shear flows associated with internal waves have
been studied by numerical simulation (Andreassen & Wasberg 1994; Andreassen
et al. 1998; Fritts et al. 1996, 1998). Convective instability initiates counter-rotating
streamwise vortex pairs as an internal wave breaks, and K-H instability then locally
intensifies a vortex sheet in parallel shears, forming spanwise vortices (cf. figure 1).
These new vortices then render the previous streamwise vortices unstable via a stretch-
and-intensification process, which produces a complex three-dimensional vortex struc-
ture involving intertwined vortex tubes. Analogous vorticity evolution in breaking
surface waves might be expected, owing to their shear flows.
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There are also several theoretical studies of the evolution of counter-rotating stream-
wise vortices arising between spanwise vortices consecutively arrayed in a parallel
shear flow (Corcos & Sherman 1984; Corcos & Lin 1984; Lin & Corcos 1984).
Lasheras & Choi (1988) experimentally studied the formations of streamwise vortices
which develop from a plane free shear layer. Their interpretation is that perturbed
vortex filaments placed in a stagnation region on a braid between spanwise vortices
are stretched along the principal plane, and evolve into vortex loops exhibiting
counter-rotating vorticity. Amplification of a perturbation at the braid then forms
the three-dimensional structure in which the stretched loops envelop the spanwise
vortices. A related numerical computation was carried out by Ashurst & Meiburg
(1988).

Hayakawa & Hussain (1989) made experimental measurements for three-
dimensional vorticities generated behind a circular cylinder, which have a coherent
structure where the so-called ribs longitudinally elongate and traverse primary vortices
in turbulent wakes. Williamson (1996) discussed three-dimensional instability at a
saddle point between the primary spanwise vortices shedding from a cylinder. A
mechanism to form three-dimensional wakes involving vortex loops has also been
found. Andreassen et al. (1998) and Fritts et al. (1998) visualize simulated coherent
vortex structures in a breaking internal wave, on the basis of the definition of a vortex
core developed by Jeong & Hussain (1995). This is a good way to identify coherent
vortices less dependent on the magnitude of the vorticity, and to demonstrate the
evolution of the counter-rotating vortices and their interaction with the spanwise
vortices produced through K-H instability.

In the case of breaking waves, the plunging jets at first produce longitudinal arrays
of spanwise vortices (referred to as horizontal eddies by Nadaoka et al. 1989), with
a two-dimensional vortex structure. By tracking air bubbles under the turbulent
bore, Nadaoka et al. (1989) found that an obliquely descending eddy subsequently
forms, stretching downward behind the primary spanwise vortices in an inherently
three-dimensional large-scale vortex structure. The axis of rotation of this obliquely
descending eddy was found to coincide with the principal axis of ensemble-averaged
strain behind the wave crest. Cox & Anderson (2001) examined possible intermittent
vertical rotating flows in the obliquely descending eddy and its rotation directions
after a wave breaks, by particle image velocimetry (PIV) measurements. Watanabe &
Saeki (1999) investigated the vorticity evolution and the emergence of the spanwise
velocity component during wave breaking using three-dimensional large-eddy
simulation (LES), with a sub-grid viscosity model based on renormalization group
theory (Yakhot & Orszag 1986). Christensen & Deigaard (2001) also used LES
based on a Smagorinsky model for a breaking wave with a uniform surface in the
transverse (alongshore) direction. They found that three-dimensional flow features
with turbulent eddies spontaneously develop. Obliquely descending eddies were not
always detected, when longitudinal vortices elongated in the wave direction appeared
instead. Christensen, Walstra & Emerat (2002) subsequently speculated that the
obliquely descending eddies may be generated by a physical mechanism similar to
that which produces the well-known Langmuir circulation cells owing to wind shear.
Although some kind of shear instability may indeed be involved, there is of course a
substantial difference in the length scale between the obliquely descending eddies and
Langmuir circulation cells. Further, the shear layers which occur among the multiple
large-scale primary vortices differ from wind-driven horizontal shears.

The simulations discussed above provide some insight, but the dependence of the
three-dimensional structure of the vortices upon the breaker type and the initiation
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and development of the obliquely descending eddy requires further investigation. The
emergence of obliquely descending eddies under certain conditions is particularly
important from an engineering perspective, since they may play a prominent role in
picking up and transporting bottom sediments, and hence cause pronounced localized
bed and beach erosion. In this paper, we extend the work of Watanabe & Saeki (1999)
to compute the vorticity and strain fields for both plunging and spilling breakers, to
investigate the three-dimensional phenomena described above. In particular, attention
is focused on the initiation and evolution of the vortex structure in surf zone flow, on
the basis of vortex dynamics.

We again consider gravity-dominated single-phase (liquid) flow. Air bubbles are
almost inevitably present in wave breaking, so the omission of air–water interactions
under the single-phase assumption does warrant some discussion. In a plunging
breaker that traps air, the pressure in an initial (often large) air pocket beneath the
plunging jet rapidly increases, and the cavity (the air pocket) may fragment into
bubbly flow. Laboratory measurements by Lamarre & Melville (1991) suggest that up
to half of the total energy dissipation in breaking waves in deep water may go into
entraining air against its buoyancy – and there can be significant bubble migration
behind the jet owing to strong pressure gradients, in the initial stages of breaking.
Although typical spilling breakers do not exhibit large collapsing air pockets, bubbly
flow is nevertheless usually evident. A two-phase (air–water) three-dimensional model
could be introduced, to investigate the extent that baroclinically generated vorticity
in plunging breakers might be transported into the vortex structures produced by the
progressing jets, but that is beyond the scope of this paper. However, the dynamic
effects of air bubbles that commonly become entrained (in both plunging and spilling
breakers) can be estimated, for the vortex structures predicted under the single-phase
assumption adopted.

Aeration is discussed further in § 2, following consideration of the LES numerical
model used. Section 3 describes the initiation of three-dimensional instability and the
resulting formation of rib structure, in the case of a plunging breaker. Section 4 is
devoted to identification of the obliquely descending eddy, and the dependence of the
vorticity structure on the breaker type. The results are summarized in § 5. Validation
of the wave-breaking model adopted is further discussed in Appendix A, and the
dynamic effects of bubbles on the vortex structures in Appendix B.

2. Numerical formulation
As previously mentioned, the evolution of the breaking wave shape and the resulting

vortex structure depends upon the breaker type. Major factors are the breaking wave
height Hb, the breaking water depth hb, the wave period T (or deep-water wavelength
L0 via a dispersion relation) and the bottom slope θ . A surf similarity parameter
involving these factors, ξ = tan θ/

√
Hb/L0, may be adopted to characterize the breaker

type (cf. table 1). In this paper, typical plunging and spilling breakers are represented,
in investigating the characteristics of surf-zone flow by large-eddy simulation (LES).

2.1. Numerical model

Details of the LES model may be found in Watanabe & Saeki (1999), so we only
briefly outline the model and numerical procedure here. As shown in figure 2, a
Cartesian coordinate system is adopted to configure a sloping beach computing
domain, where θ is a uniform angle of slope with respect to the horizontal axis. The



Three-dimensional vortex structures under breaking waves 295

Cnoidal Breaking Breaking Surf Wave period (l,m,n) grid
Case breaker wave wave water Bottom similarity in laboratory numbers

type modulus height depth slope Parameter scale (s) used

1 Spilling 0.92247 0.48 0.600 1/20 0.2073 1.15 564, 26, 41
2 Plunging 0.99470 0.58 0.570 1/20 0.4510 2.75 564, 26, 41
3 Strongly 0.99470 0.65 0.465 1/10 0.8520 2.75 301, 26, 41

plunging
4 Intermediate 0.97930 0.53 0.592 1/20 0.2745 1.60 564, 26, 41

(spilling–
plunging)

5 Plunging 0.99740 0.70 0.624 1/20 0.4433 2.97 564, 26, 41

Table 1. Wave and numerical conditions.
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y
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Figure 2. Computing domain and coordinate system.

dimensionless Navier–Stokes equation of incompressible fluid motion is

Du
Dt

= −∇p + ∇ · τ0 + g, (2.1)

where u denotes the fluid velocity, p is the pressure, τ0 is the viscous stress tensor
(=2ν0S, where ν0 is the kinematic viscosity and S is the strain tensor), and g is
the acceleration due to gravity. All the dimensionless variables in equation (2.1) are
conveniently defined with reference to the water wave speed, the water depth at
the inflow boundary, and the water density. The differential operators in equation
(2.1) are the material derivative D/Dt = ∂/∂t + u∗∂/∂l + v∗∂/∂m + w∗∂/∂n, where
u∗ = u∂l/∂x + w∂l/∂z, v∗ = v and w∗ = u∂n/∂x + w∂n/∂z, with an asterisk denoting
quantities relative to the (l, m, n) coordinates; the vector gradient ∇ = ((∂l/∂x)(∂/∂l)+
(∂n/∂x)(∂/∂n), ∂/∂m, (∂l/∂z)(∂/∂l) + (∂n/∂z)(∂/∂n)).

For any arbitrary variable ψ , the grid-scale (GS) variable ψ is obtained by the
filtering operation

ψ =

∫
G(x − x ′)ψ(x ′) d3x ′, (2.2)

where G is the filter kernel, and the subgrid-scale (SGS) component is then defined
as ψ ′ = ψ − ψ . The essential coordinate and any arbitrary variable in our sloping
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orthogonal reference system are written as

x∗ = Ax, ψ∗ = Aψ, (2.3)

where the orthogonal transformation matrix

A =




∂l

∂x
0

∂l

∂z

0 1 0
∂n

∂x
0

∂n

∂z


 , (2.4)

so the GS variable in this transformed coordinates can be written as

ψ∗ =

∫
G(x∗ − x∗′

)ψ∗(x∗′
) d3x∗′

=

∫
G(A(x − x′))Aψ(Ax ′)|A| d3x ′. (2.5)

Since the symmetric filter kernel G(A(x − x ′)) = G(x − x′) and |A| = 1, equation (2.5)
becomes

ψ∗ = Aψ. (2.6)

Equations (2.3) and (2.6) demonstrate the invariance of the GS and SGS velocities
under coordinate transformation, i.e.

u∗ = Au, u∗′
= Au′. (2.7)

After performing filtering operations, equation (2.1) becomes

Df u
Dt

= −∇p − ∇ · τ + ∇ · τ0 + g, (2.8)

where τ denotes the SGS stress tensor, Df /Dt = ∂/∂t + u∗∂/∂l + v∗∂/∂m + w∗∂/∂n

is the filtered material derivative . The second and third terms on the right-hand side
of equation (2.8) are described by the SGS viscosity form

τ − 1
3
(τ : I)I − τ0 = −2νS (2.9)

in tensor form, where I is the unit dyadic. The SGS viscosity model based on
renormalization group theory (Yakhot & Orszag 1986) is

ν = ν0

[
1 + H

(
c2
s �

4ν

ν3
0

(2S :S) − C

)]1/3

, (2.10)

where H denotes the Heaviside unit step function (H (x) = 0 if x � 0, H (x) = x

if x > 0), the Smagorinsky constant is cs = 0.0062, the constant C = 75, and the
filter scale � = (�l�m�n)1/3 with streamwise (�l), spanwise (�m) and normal (�n)
grid spacings. The viscosity coefficient ν is computed from equation (2.10) at each
time step, using Newton–Raphson iteration. In passing, we note that ν reduces to
the laminar kinematic viscosity coefficient ν0 in relatively low strain flows, and the
second term on the right-hand side of (2.10) represents the effect of SGS turbulence
arising in higher strain fields. Thus this SGS viscosity model is reasonable to simulate
the transitional turbulence generated in breaking water waves, which were formerly
described well by irrotational flow.

Alternative surface boundary conditions and some two-phase turbulence model
might be incorporated in the computation, if an attempt were made to include air–
water interactions ignored in this paper. The omission of air–water interactions in our
model might reduce ‘spiky’ fluid velocity fluctuations in aerated regions, but the major
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large-scale velocity variations produced by gravity-dominated jets appear otherwise
satisfactorily accounted for in the single-phase representation adopted in this paper
(cf. Appendix A). Air bubbles may also displace and distort vortex flows (Sridhar &
Katz 1999), but not significantly in our context (cf. Appendix B).

2.2. Dynamic boundary conditions

Direct numerical simulation (DNS) of free-surface turbulence shows that a thin
surface layer inducing highly anisotropic vorticity is formed at a linearized surface,
and hairpin-like vortex structures are produced beneath the surface (Shen et al.
1999). Subsurface coherent vortex structures composed of both quasi-streamwise
and surface-attached vortex tubes also occur in fully developed turbulent flows in
open channels (Nagaosa 1999). Shen & Yue (2001) examined the applicability of an
anisotropic SGS stress model to free-surface turbulent flows.

The DNS approach may be more suitable than LES for defining small-scale struc-
tures of deforming free-surface flows under certain boundary conditions, such as
for sprays or capillary waves. For example, Chen et al. (1999) used DNS to compute
two-dimensional deepwater interfacial breaking waves with capillary effects taken into
account. Details of the jet motion and vorticity generation at the gas–liquid interface
in the splash-up cycle are presented and discussed in that paper. We may also note that
surface tension may be important for smaller length scales (cf. Duncan 2001; Liu &
Duncan 2003), when there can be transverse instability of an otherwise inviscid plung-
ing jet (Longuet-Higgins 1995). Indeed, there are many terms to consider when averag-
ing over a free surface that is strongly affected by turbulence (Brocchini & Peregrine
2001a, b).

It seems more difficult to use DNS to evaluate lengths over the broad energy spec-
trum in the surf zone, ranging from the Kolmogorov length scale O((ν3/ε)1/4) to the
wavelength of the breaking wave O(

√
g(hb + Hb)T ), while LES is suitable for simulat-

ing relatively large-scale flows with a small-scale turbulent model. The vortex
structures dealt with in this paper have relatively large length scales, and any relatively
localized highly anisotropic turbulence near the surface is left unresolved. Indeed, in
our computation, zero shear and zero surface tension conditions are applied on the
surface, so that constant pressure at the surface is the free-surface dynamic boundary
condition to be satisfied. The discrete form of equation (2.8), for which the fractional
two-step method has been performed in advance, is solved by a predictor–corrector
and CIP (cubic interpolation polynomial) method. A Poisson equation for the pressure
is iteratively computed by the multi-grid method, with numerical corrections made for
the pressure at the adjacent grids of any free surface via an irregular star method, to
ensure the constant pressure condition p = 0 on the surface. Small-scale (less than grid
spacing) disturbances of the smooth free surface assumed in our model are implicitly
excluded, and for strongly disturbed water surfaces more complicated free-surface
boundary conditions would be required (Brocchini & Peregrine 2001b).

2.3. Kinematic boundary conditions

So-called volume-of-fluid (VOF) methods have been used extensively for free-surface
representations. However, it is now well-known that the simplest types of VOF
methods such as SOLA-VOF (Hirt & Nichols 1981) produce significant errors
depending on the grid size – especially on highly curved surfaces, because of the
inaccuracy of low-order schemes in reconstructing the surfaces (Scardovelli & Zaleski
1999). A higher-order representation of the complex surface shape is essential to carry
out a stable computation, such as the higher-order VOF method that Chen et al.
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(1999) used to reconstruct precisely the gas–liquid interfaces with high curvature in
breaking waves.

In our computation, a density function (ρf ) featuring a step function at cells
associated with any free surface is introduced. The density function is computed from
the equation

Df ρf (x, t)

Dt
= 0 (2.11)

via the CIP method, such that a sharp surface can be defined at each time step. In
particular, ρf is set to be 1 in the liquid and 0 elsewhere over the entire computational
domain, and the free-surface at any time is defined to be where ρf = 0.5. Application
of (2.11) at the free surface (corresponding to ρf = 0.5) is the kinematic boundary
condition to be satisfied – cf. also (2.13) below. By using a high-order (Hermite
spline) interpolation within a cell to define any surface profile and updating in a
quasi-Lagrangean way, we can more accurately reconstruct the surface. At grids
near the surface in our fixed grid system, pseudo-velocities are extrapolated from
inner fluid velocities to ghost cells introduced outside the fluid boundary, and the
free-surface flow is treated as if it were interfacial two-phase flow composed of liquid
and ghost-liquid phases. Assuming continuity of fluid velocity across the surface, the
surface velocity (vs) can be defined as

vs = u · n = uin · n = uout · n, (2.12)

where uin and uout represent the respective velocities just inside and outside of the
surface. The free-surface kinematic boundary condition (2.11) at ρf = 0.5 is thus

∂ρf

∂t
+ vs |∇ρf | =

∂ρf

∂t
+ uin · n|∇ρf | =

∂ρf

∂t
+ uout · n|∇ρf | = 0. (2.13)

Hence the appropriate update of the surface with normal velocity vs can be achieved
by allocating the pseudo-fluid velocity uout satisfying (2.12) on the ghost cell across
the surface (through normal extrapolation). A non-slip condition is imposed at the
bottom (on the plane n = 0), and a periodic condition on the m-axis such that
the variable quantities are symmetric (i.e. identical on both sides of the computation
domain). The velocity, pressure and density functions are given at the inflow boundary
on the basis of second-order cnoidal wave theory. The numerical and wave conditions
used are summarized in table 1.

2.4. Aeration

As has also been previously mentioned, the cavity (the air pocket) in a plunging
breaker may fragment into bubbly flow. The fragmentation is to be expected because
the surface tension is readily overcome by the gravity-dominated flow, unless the cavity
can be maintained by its air pressure. The plunging jet proceeds faster than the bubbly
flow behind it – but again as previously mentioned, there can be significant bubble
migration behind the jet owing to strong pressure gradients, at least in the early stages
of breaking. Some relevant observations are described below, as background to our
discussion of the dynamic effects of bubbles on the vortex structures in Appendix B.

Dean & Stokes (2002) have closely observed cavity fragmentation and subsequent
bubble entrainment in a plunging breaker. The cavity that formed at the initial
plunging phase quickly fragmented into bubbles, many of them above the Hinze
scale, whereas bubbles smaller than the Hinze scale were formed by the jet interaction
at the wave-face. Both large bubbles from the fragmented cavity and small bubbles
due to the jet/wave-face interaction then became entrained in much the same region,
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at or near the primary vortex. However, the more buoyant large bubbles tended to
rise and stay in the upper part of the vortex structure, while small bubbles descended
and were widely distributed. Moreover, they observed that the bubble population
was predominantly smaller than the Hinze scale (cf. their figure 6). The continued
entrainment of the less buoyant smaller bubbles is most probably due to the radial
pressure gradient within the vortex flow (cf. also Nadaoka et al. 1989; Ruetsch &
Meiburg 1993; Druzhinin & Elghobashi 1998). Dean & Stokes (2002) also noted
that, whereas a wave may be acoustically active inside the wave crest owing to newly
created bubbles when it first breaks, it then becomes acoustically quiescent because
bubbles are no longer created during the much longer evolution of the bubble plume.

If an overturning jet were regarded as a free-falling water mass, in time t it would
fall a vertical distance L = gt2/2. Since the breaking wave height (Hb) represents
an appropriate initial representative vertical length scale for the plunging jet, the
characteristic time interval between the earliest splash events would therefore be
�t = 2

√
2Hb/g. This time interval is approximated well by T/8 for all three plunging

wave cases considered later in this paper, where T denotes the time between successive
breaking waves. (The respective ratios of �t to T/8 for the cases 2, 3 and 5 are 1.019,
1.079 and 1.020.) Thus after the first plunging event, the phase interval T/8 is
commonly used to characterize the splash-up process – i.e. the time interval between
the arrival of the consecutive secondary jets in these three plunging wave cases is
considered to be T/8. Since the primary spanwise vortices are formed at every splash,
�t is also the characteristic time during which new vortices are produced.

From extensive observations, Cox & Shin (2003) have found that the time variation
of normalized void fractions in breaking waves is approximated well by the following
model, featuring initially linear growth and then quite rapid exponential decay from
a maximum:

α

αave

= a
t

T
exp

(
−b

t

T

)
, (2.14)

where a =800 and b = 90 (above still water) or 100 (below still water) are empirical
coefficients. The maximum void fraction thus typically occurs at time T/b after a
breaking wave arrives, which is also the time-scale of the exponential decay. This
early maximum aeration and equally rapid decay of the void fraction (degassing)
defined by the empirical result (2.14) implies that the aeration delivered by a breaking
wave is very short-lived, relative to the time-scale (T/8) of the vortex formation
predicted in this paper assuming single-phase gravity-dominated flow. However, since
aeration from any source might deform and displace the evolving vortex structures,
the dynamic effect of air bubbles is further assessed in Appendix B for several of the
wave breaking cases considered in this paper.

3. Formation of the three-dimensional large-scale vortex structure
As mentioned in § 1, although the fluid motion in a water wave may be essentially

two-dimensional (in the wave cross-section) before it breaks, shortly after breaking
the fluid motion becomes three-dimensional and involves a number of large-scale
vortices. At every stage where a plunging jet in the sequence meets the water ahead,
the initial primary vortex has a length scale that is approximately the size of the jet,
which is much longer than our computing grid spacing. The energy of the primary
vortex is also much greater than the SGS turbulence component, so that subsequently
the emphasis is on GS quantities in defining the dominant large-scale flow, rather
than on diffusive SGS contributions.
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Figure 3. (a) Wave shape and simultaneous isosurfaces of (b) spanwise, (c) streamwise and
(d) vertical vorticities at t = tp (left-hand column) and t = tp + T/8 (right-hand column) in
the first wave breaking for case 2 (tp , plunging phase; T , wave period; white surface, +2.5;
black surface, −2.5).

3.1. Generation of the three-dimensional vorticity field

Since a propagating periodic wavetrain is computed as an initial boundary problem
from a still water state, there is no disturbed fluid until the first breaking event occurs.
For the case 2 plunging breaker in table 1, figure 3 shows the surface deformation
for the plunging phase in the first breaking event (when the surf zone elsewhere
has undisturbed fluid), together with the isosurfaces of the spanwise, streamwise and
vertical vorticities. As a spanwise vortex sheet emerges, looping along an inner surface
surrounded by the overturning jet, counter-rotating streamwise and vertical vorticities
simultaneously arise beneath the toe of the jet, initiating the three-dimensional
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Figure 4. Re-orientation of the vorticity perturbations undergoing uniform stretching in the
x-direction: (a) spanwise vortex filaments aligned at a gentle angle with the y-axis are stretched
in the x-axis, (b) the angle of the filaments increases as they are stretched, (c) the direction of
the filaments approaches the x-axis, and their vorticity is re-oriented in the spanwise direction,
(d) the spanwise perturbations are amplified.

vorticity field. Re-orientation of perturbations of the primary vorticity owing to
streamwise stretching may account for the emergence of the spanwise perturbations
(cf. figure 4). Thus, the rapid growth of the spanwise perturbations, highly stretched
in a saddle-point flow at the plunging point, results in the counter-rotating vortices
to be discussed further in subsequent sections.

As mentioned previously, the phase interval δt = T/8 characterizes each vortex
formation. At the second plunging phase (t = tp + T/8) shown in figure 3, counter-
rotating vortices – in which the isosurface of streamwise and vertical vorticities exhibit
a ‘sausage’ shape – are stretched along the trajectory of the rebounding jet projecting
from the first to the second plunging point, and a coherent vortex structure develops.
Consecutive local stretch in the large-scale vortex structure causes a gradual scaling
down toward smaller vortices over the transition and bore region, where subsets of the
vortices are dissipated and the survivors are transported by the reverse flow beneath
the wave trough level up to the breaking point until the next breaking event occurs (cf.
figures 5 and 8a). The remaining vorticity affects the next breaking process, when the
large-scale vortices produced at that stage interact with it, forming a more complex
local shear field and resultant vortex substructures with more local deformation.

Vortices in the instantaneous surf zone flow also locally alter the intensity, shape and
position of the vortices involved in the coherent structure, at the onset of every wave
break – cf. also figure 6, which shows the isosurfaces of vorticity in the transition
region during the third and fourth wave-breaking events for case 5. The relative
breaking wave height is greater than for case 2, and a larger vortex structure forms,
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Figure 5. (a) Wave shape and simultaneous isosurfaces of (b) spanwise, (c) streamwise and
(d) vertical vorticities at the plunging phase t = tp in the third wave breaking for case 2 (white
surface, +2.5; black surface, −2.5).

with three sets of counter-rotating vortices longitudinally traversing primary rollers
of higher vorticity. This suggests that the number of vortices in the large-scale vortex
structure, and the total vorticity it possesses, depends upon the breaker scale. It is
notable, however, that the number of counter-rotating vortices, which derive from an
inherent mode of spanwise instability, may be restricted by the number of grid points
in the m-axis on which the periodic boundary condition is imposed. The simulated
finger-like surface shape formed at the toe of the secondary jet, apparently caused by
the spanwise vortex undulation corresponding to a spanwise instability mechanism
as discussed below, coincides with the fingers seen in a laboratory experiment we
undertook (if sprays and bubbles scattered around the jet are ignored) – cf. figure 7.
This indicates that our simulation appropriately resolves the spanwise wavenumber
of the instability under breaking waves on a laboratory scale.

3.2. Shear-induced spanwise instability

The remainder of this section explores results we obtained up to the sixth wave-
breaking event, when the wave shape reaches a quasi-steady state.

Figure 8 shows the vertical (z-axis), horizontal (x-axis) and spanwise (y-axis)
distributions of the instantaneous fluid velocity in the transition region at the third
plunging phase for case 2. The shoreward flow in a breaking wave-front above the
trough level is found to form a horizontal parallel shear (cf. figure 8a). In figure 8b, the
horizontal fluctuations of the vertical velocity associated with the primary vortices can
be seen at each plunging point. In particular, a high vertical shear flow is formed at
the third plunging point, where the plunging jet begins to rebound upward because of
the sudden change in the motion of the jet. The predominant two-dimensional velocity
simultaneously becomes unstable in the shear, leading to spanwise undulations of the
velocity components at the plunging point (cf. figure 8c).
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Figure 6. Isosurfaces of (a) spanwise, (b) streamwise and (c) vertical vorticities in a transition
region at t = tp + T/8 in the third wave breaking (left-hand column) and at the same phase in
the fourth wave breaking (right-hand column) for case 5 (white surface, +2.5; black surface,
−2.5).

According to Andreassen et al. (1998), at the onset of internal wave breaking in
stratified flow, a convective instability causes the formation of streamwise counter-
rotating vortex pairs, resulting in dynamical development of the three-dimensional
vortex structure through shear stretch-and-intensification and interaction with the
spanwise vortices arising due to K-H instability (cf. figure 1). Although the instability
triggering the transition to three-dimensional flow when a surface wave breaks may
differ from that of a breaking internal wave, the evolution of the large-scale vortex
structure in the surf zone appears to be associated with a local shear instability
analogous to K-H instability.

The interconnected relationship between instability, the shear flow and the vortices
at the plunging point is notable. Figure 9 shows the streamlines on the centre plane
of the domain (m = 0.5), at the second and third plunging phases. A saddle-point
flow appears between the upward flow associated with the rebounding jet motion
and the downward rotational flow of the primary vortex, behind the third plunging
point (circled). The counter-rotating vortices and the spanwise undulation of velocity
(cf. figures 3 and 8c) appear near this region, which suggests that strong stretching
associated with the saddle-point flow is responsible for amplifying spanwise vorticity
perturbations on the shear layer, as mentioned in §3.1 (cf. figure 4 and also figure 10).
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Figure 7. UV light-induced fluorescence video images of the rebounding jet during a labora-
tory experiment ((a) perspective side view, (b) wave-face view), and (c) corresponding shapes
of a plunging jet in a computation for case 2. The time-interval for both results is 0.032 s. The
experiment was conducted in a wave flume 8m long, 0.25m wide and 0.5m high with a 1:20
slope, equivalent to the geometry in our computing domain (cf. figure 1). The wave conditions
were identical to case 2, and the images were recorded by a high-speed video camera (recording
frequency: 250Hz, resolution 640 × 480 pixels).

Peregrine (1983) identified some possible splash-up modes (‘rebounds’, ‘intermediate’
and ‘pushes up’), after the plunging point. In our computations for plunging breakers,
the presence of strong shear layers appears to depend upon the splash-up mode.
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Figure 9. Streamlines at the centre of the computing domain (m = 0.5) during the splash-up
cycle in case 2. (a) t = tp + T/8, (b) t = tp + 2T/8.
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Figure 10. Principal axes and strain rate in case 2. (a) t = tp , (b) t = tp + T/8,
(c) t = tp + 2T/8.

Figure 10 shows the principal axes and strain rates, corresponding to the eigenvectors
and eigenvalues of the strain tensor, in the same cross-section as in figure 9. When the
jet hits the wave face in the initial stage, a strong shear layer with horizontal stretching
(corresponding to a high eigenvalue in a horizontal direction) is rapidly formed on
the former surface beneath the jet (cf. figure 10a). High downward momentum
following the jet then penetrates the forward water region to push it upward, forming
a significant vertical shear layer in the pushes up mode. Very high eigenvalues in
an obliquely upward direction occur on the shear layers behind the secondary jet
pushed up in front of the plunging point, indicating that the fluid in this region is
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Figure 11. Distributions of vortex cores in a transition region in (a) case 2 and (b) case 4.
Left-hand column, t = tp + T/8; right-hand column, t = tp + 2T/8.

significantly stretched in this direction (cf. figure 10b, c). This region coincides with
the saddle region in the shear produced by the secondary jet and the primary vortex
behind it. The saddle-point flow exhibiting maximum stretch in the strain initiates the
streamwise vorticity, yielding the counter-rotating vortices in the braid. This process
is probably analogous to the three-dimensional instability of a plane shear layer
(Lasheras & Choi 1988), as discussed below.

3.3. Coherent vortex formation

We visualize the coherent vortices evolving in the inherent strain field under breaking
waves in much the same manner as Andreassen et al. (1998). Figure 11 shows the
distribution of vortex cores in the transition regions for cases 2 and 4 – i.e. isosurfaces
of the negative second eigenvalue λ2 of the tensor Lij = S2

ij + Ω2
ij , where Sij denotes

the strain tensor and Ωij the vorticity tensor (cf. Jeong & Hussain 1995). Longitudinal
vortices with two hairpin-like bends in the saddle region are stretched on a plane
sloping upward, and connect the upper part of the rebounding jet to the bottom
part of the primary vortex (cf. also figure 12). At the inception of rebounding,
the spanwise vorticity in the braid layer becomes unstable in the saddle region of
the strain (cf. figure 10). The spanwise undulation of the vorticity is amplified by
stretching along the eigenvector (i.e. the principal axis), causing a wavy vortex tube.
Since both sides of the bends in the vortex tube have opposite vorticity, a self-
induction occurring between them displaces the down-stream bends (near the jet)
upward and the up-stream bends downward, causing normal perturbations to the
braid layer. Furthermore, at the down-stream bends, parts of the tube are pulled by
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(m = 0.5) in case 5 (a) t = tp . (b) t = tp + T/8.

the rotating forwarding jet, while the up-stream bends are wrapped by the subsequent
primary vortex (cf. also figures 13 and 14). The stretched vortex tube intensifies its
vorticity, and develop into a vortex loop with counter-rotating vorticity. While the
next plunging stage yields a new primary vortex, further stretching and wrapping of
the vortex loop organizes the so-called rib structure, involving the longitudinal (or
rib) vortices enveloping the primary vortices (cf. figure 13 and also figure 18). The rib
and primary vortices are subject to local stretching, and thus the vorticity and local
strains are consecutively intensified even after the jets have passed, so that the vortex
structure becomes complex with the vortices intertwined and entangled together. The
rib structure was found in all of our simulations for plunging breakers, which suggests
that the formation of this structure is a characteristic of the splash-up cycle for that
breaker type.

On the other hand, the number of bends in the vortex loop tends to increase if
the relative breaking wave height increases and the bottom slope steepens. Strongly
plunging waves may yield longitudinally stretched vortex loops with three bends – i.e.
three pairs of counter-rotating vorticity beneath the wave surface (cf. figures 14 and
15), rather than just two as in the simulations for cases 2 and 4 (cf. figures 11). In
general, this occurs in very shallow water, where the vertical evolution of the vortices
is inhibited by the bottom. The resulting vortex structure is packed within a shallow-
water region under the descending surface after the breaking wave crest passes, and
features a longitudinally elongated rib structure (cf. the cores at t = tp + 2T/8 in
figure 15).

3.4. Local surface deformation by subsurface vortices

In addition to the water wave dynamic pressure, major factors defining transient
local deformations of the surface include the vortices and vortex-induced pressure
fluctuations beneath it. For instance, a vortex pair approaching a free surface from
below pushes the surface up, and a nearby local depression (a ‘scar’) with a secondary
vortex underneath may appear in low Weber number flows (Ohring & Lugt 1991;
Sarpkaya 1996). Brocchini & Peregrine (2001a) summarize various aspects of surface
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Figure 13. Schematic representation of the mechanism to form the vortex loops evolving into
the rib structure (a) Initiation of the vortex loop at the first plunging point. (b) Consecutive
formation of the vortex loops. (c) Evolution of the rib vortices in a prinary vortex array.

deformation involving turbulence in their wide-ranging review, and in particular they
envisage a physical mechanism involving a subsurface separation to generate scars in
a typical vortex-induced deformation.

Figure 14 shows the distribution of vortex cores and simultaneous surface
deformations at the second plunging phase for case 5. Several longitudinal depressions
(scars) of the surface are generated on the jet, forming a rib-like deformed surface
there. The rotating flow in the subsurface rib vortices can entrain fluid downward
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Figure 14. Shape of a free surface (left-hand column) and simultaneous vortex cores
(right-hand column) in the secondary jet in case 5. (a) t = tp + 9T/128; (b) t = tp + 18T/128.
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Figure 15. Distributions of the vortex cores at (a) t = tp + T/8 and (b) t = tp + 2T/8 in
case 3.

from the surface, to form scars – cf. again Brocchini & Peregrine (2001a). In passing,
let us note, however, that the dimensions of the scars may depend upon the surface
tension, ignored in our computation. It can be seen that scars are generated over voids
between rib vortices (the straighter parts of the vortex loops) aligned to a sloping braid
beneath the surface in the secondary jet, and therefore the distribution of the ribs near
the surface correlates with the local rise and depression of the surface. As previously
mentioned, a finger-like surface pattern appears at the toe of the rebounding jets,
in both the numerical and experimental results (cf. figure 7). Owing to the counter-
rotating vorticity, in the early formation stage of the secondary jet there is a spanwise
pressure gradient beneath the surface, and rotational entrainments of the surface
by the subsurface vortices and the resulting subsurface pressure undulations are
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responsible for forming the finger-shaped jet (cf. also figure 16). The corresponding
vortex-induced surface fluctuations also contribute to spanwise pressure gradient
changes, generating transverse gravity waves.

4. Obliquely descending eddies
For a plunging breaker, the initial vortex loops stretch and align to a sloping

shear layer, and evolve into rib vortices, as shown in the schematic representation of
the mechanism in figure 13. These rib vortices are three-dimensional substructures
consisting of ribs extending from the upper part of the forward primary vortex to
the lower part of the rear primary vortex (the primary two-dimensional structure).
Figure 17 shows a sequence of snapshots with bubbles in the obliquely descending
eddies that we observed experimentally, for the wave conditions of case 2 (cf. also
figure 8 in Nadaoka et al. 1989). We consider that the rib vortices (or stretched vortex
loops) we find computationally correspond to these tilted columnar bubble clouds,
and identify the obliquely descending eddies found by Nadaoka et al. (1989) with
these rib vortices.

Nadaoka et al. (1989) showed that the principal axes of ensemble-averaged strains
in a region behind a wave crest are inclined at about 45◦ or less to the horizontal.
They concluded that the mean strains are associated with evolution of the obliquely
descending eddies, because the inclination of the principal axis of strain is analogous to
the stretch direction of any obliquely descending eddy. Figure 18 illustrates transitions
of the positions of the primary and rib vortices, described as projections of the vortex
cores to the (l, n)-plane. The inclination angle of the S-shaped rib vortex increases
after the first plunging phase, and the maximum angle appears at the second plunging
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Figure 17. The bubble clouds formed in the surf zone in the wave conditions corresponding
to case 2 during a visual experiment (solid circle: bubbles trapped in the obliquely descending
eddy; broken circle: bubbles trapped in the primary vortex); (a) side view of the bubble clouds
at the second plunging point (time-interval: 0.04 s), (b) perspective rear view (time-interval:
0.08 s), (c) perspective front view (time-interval: 0.16 s).
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Figure 18. Evolution of the positions of the primary (represented by grey lines) and rib (black
lines) vortices, and simultaneous wave shape for (a) case 5, (b) case 2 and (c) case 4; time
interval: 9T/512.

phase. The rib vortex is then stretched longitudinally with a decreased angle. It appears
that restriction of the vertical transport of the vortices by the bottom contributes to
the alignment of the rib vortex with the bottom. After the second plunging phase,
the angle of the rib vortex appears to coincide with a typical tilting feature of the
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(d) vertical vorticities at t = tb + 3T/8 in case 1 (white surface,+2.5; black surface,−2.5; tb ,
wave breaking phase).

obliquely descending eddy observed over time (cf. figure 2 in Longo et al. 2002, and
our figure 17). The maximum angle of the rib vortex may depend on the rebound
height of the jet and the relative position of the primary vortex.

In contrast to a plunging breaker, where the vortices are rather closely packed,
a spilling breaker typically occurs in deeper water. Thus, its vortices develop more
freely, without significant restriction by the bottom, and they are also sparser so that
there is less interaction between them. Figure 19 shows the wave shape and vorticity
isosurfaces for case 1. Several counter-rotating vortices, formed between the forward
spanwise vortex in a horizontal roller and the subsequent vortex with the same
rotation, are stretched longitudinally and trail from the vicinity of the breaking point.
Whereas a plunging breaker is characterized by the cyclic plunging process of large
jets, the relatively smaller jets in a spilling breaker produce a much weaker primary
roller vortex. Spanwise vortex arrays, similar to those in a plunging breaker, but with
much smaller length scales, form successively at a certain spacing throughout the
process – and the maximum stretch primarily arises in the saddle region between them
(cf. figure 20). Figure 21 shows the three-dimensional vorticity vectors beneath the free
surface behind the wave crest. While the vortex vector demonstrates the existence of
spanwise vortex filaments aligned with the crest, the filaments become unstable in the
saddle region, and the undulation of the filaments is then amplified behind it. Vortex
loops with counter-rotating vorticities are initiated in this process, and evolve into
longitudinal vortices stretched obliquely downward (the obliquely descending eddies).

Figure 22 shows vortex core distributions under spilling breakers for case 1, and
the evolution of the relative positions of primary rollers and longitudinal vortices.
Longitudinal vortices are gradually intensified through consecutive stretching, and
consequently a coherent longitudinal vortex structure predominantes, rather than the
primary two-dimensional structure involving the primary spanwise vortex array in the
initial stage of a plunging breaker. A side view of vortex cores (cf. figure 22) clearly
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shows the obliquely descending vortex axis behind the crest, demonstrating that the
simulated longitudinal vortex is again identical with a obliquely descending eddy. The
inclination angles of the obliquely descending eddies were found to be smaller than
in plunging breakers, which suggests that the evolution of the obliquely descending
eddies is breaker dependent.

Figure 23 shows the trajectories of passive markers in an obliquely descending
eddy. The markers released at the place circled in figure 22(d), when the wave crest
passes above it, are initially advected by wave motion. They then encounter and
are caught up by the obliquely descending eddy (cf. also figure 22c), when a typical
spiral motion can be seen in the vortex. The radius of rotation gradually decreases
as the angular velocity increases with time, which is typical of fluid motion in a
vortex tube undergoing the stretch-and-intensification process. While the markers
consecutively exhibit nearby spiral rotation, no mean transportation along the vortex
axis has been detected in the simulation. In figure 10 of Nadaoka et al. (1989) and
also our figure 22(c), the obliquely descending eddy has a typical oblique-downward
vortex axis, although the marker trajectories appear to have a different orientation.
While an upper part of the obliquely descending eddy is transported with the wave
crest, a lower part tends to remain stationary behind it, since the mean velocity in
transporting the vortices in this region is always less than that near the crest in the
shear flow (cf. figure 24). Thus, the orientation of the vortex (corresponding to the
angle of the obliquely descending eddy) and its vorticity varies with the progress of
the breaking wave (cf. figure 22c). Thus, the marker trajectories are locally altered by
the time-dependent orientation and local displacement of the obliquely descending
eddy.

4.1. Formation of bubble clouds in the obliquely descending eddies

The presence of the obliquely descending eddy was identified by Nadaoka et al. (1989)
from observation of the bubble clouds formed along the eddy (cf. figure 17). A
physical mechanism for bubble trapping within a vortex was described by Tooby,
Wick & Isaacs (1977). They consider that fluid drag and gravity-buoyancy principally



Three-dimensional vortex structures under breaking waves 315

1.0

(a)

(b)

0.8

0.6

12

11

10

Saddle region

1.0

0.8

0.6

0.4

0.2

l

n

Wave direction

Wave propagation

Primary vortex

Saddle region

Wave propagation

Primary vortex

Spanwise undulation of vortex filament

Figure 21. (a) Vorticity vector behind the wave crest at t = tb +3T/8 and (b) schematic repre-
sentation of the evolution of vortex filaments. The undulations of the filaments are amplified in
consecutive stretch, forming the obliquely descending eddies with the counter-rotating vorticity.

account for the formation of a circular orbit which a buoyant particle follows in
rotating flow. Sene, Hunt & Thomas (1994) discussed the role of an inertial effect (the
radial pressure gradient) on bubble concentrations, and the formation of convergent
trajectories in a coherent structure formed in a turbulent shear layer. Although the
dynamic effect of bubbles was not included in our simulations, we speculate that the
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t = tp + 2T/8, and evolution of (c) the vortices and (d) wave shape in case 1 (time interval:
9T/512).

inherent bubble cloud shown in figure 17 is probably caused by a trapping process
as follows. First, bubbles entrained by plunging jets are transported to a certain
depth by a downward flow in front of the primary vortex. Next, only those bubbles
encountering the obliquely descending eddy with a certain streamwise vorticity are
trapped within the vortex, because buoyancy locally balances the dynamic drag on the
bubbles there (cf. figure 24) and the radial pressure gradient concentrates the bubbles
near the vortex core where there is locally the lowest pressure. Thus, trapped bubbles
remain within that part of the obliquely descending eddy where the radial pressure
gradient in the streamwise vortex is high enough to prevent their buoyant motion for
some time. Other more buoyant bubbles rise and rapidly disappear, leaving only the
tilted columnar bubble clouds consisting of bubbles driven by the drag and inertial
forces in spiral fluid motion, in the obliquely descending eddies (cf. again figure 17).
Thus, only the upper part of an obliquely descending eddy, where the buoyancy and
drag acting on bubbles can be in equilibrium, is visualized by the bubble clouds.

5. Conclusions
The formation of large-scale three-dimensional vortex structures in both plunging

and spilling breakers has been simulated assuming gravity-dominated single-phase
(liquid) flow without surface tension or strong surface distortions, or any dynamic
modification of the vortex structures owing to aeration.

When an overturning jet projecting from the crest in a breaking wave rebounds from
the free water surface ahead, the strain is locally intensified between the secondary
jet and the primary spanwise vortex behind it. Apparent instability in the saddle
region where the maximum stretch occurs almost instantaneously triggers a three-
dimensional velocity field at the plunging point. Thus, the spanwise undulation of the
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Figure 23. Typical trajectories of passive markers involved in the obliquely descending eddy
in a spilling breaker; +, marker release point (the broken circle in figure 22d is a release region
for the markers).

vorticity, arising from re-orientation of perturbations in the primary vorticity, is first
amplified in the saddle-point flow and leads to a wavy vortex loop. At the initial stage
of the formation of the vortex loop, the spanwise undulation of vorticity produces a
spanwise pressure gradient near the surface and wraps the surface around the vortex
axis, to form a finger-shaped rebounding jet. A stretch-and-intensification process in
the vortex loop along the principal axis of strain causes normal perturbations to a
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Figure 24. Schematic representation of the formation of columnar bubble clouds through
bubble trapping within the vortex loop. The tilt angle of the obliquely descending eddy varies
as a wave propagates because horizontal velocity to displace the eddy varies along the vortex
axis.

braid layer, by self-induction between counter-rotating vorticities at the bends of the
vortex loop. The continual stretching of the vortex loop in the braid organizes a rib
structure, in which the vortex loop envelops the upper part of a new primary vortex
produced by the next plunging jet to the bottom of the previous primary vortex
behind it.

Continual deformation of the large-scale vortices and the production of new smaller-
scale vortices are caused by local strains intensified among the vortices, even after
the breaking front has passed. While some of the vortices dissipate via a cascade
(scaling-down) process in the shear field until the next breaking event, the remainder
are transported in the reverse flow to the next wave breaking point and may trigger
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further instabilities, leading to a rather complex three-dimensional vortex structure.
Thus, especially in the case of a plunging breaker in shallow water, a number of the
large-scale vortices are packed within a shallow fluid region between the descending
free surface and the bottom after the wave passes, which causes a more complex
evolution of the vortex structure in the locally intensified strains between the closely
packed vortices.

Horizontal shear flow under a broken wave, owing to shoreward flow in a
progressing wave-front and reverse offshore flow beneath the wave trough level, can
make the shear surface unstable – producing new spanwise vortices on the surface
(cf. streamlines behind the plunging point in figure 9). Thus a vortex array, induced
through K-H instability on the plane shear surface, may develop into the so-called
offshore vortex train found by Matsunaga et al. (1988, 1994). As the vortices remaining
from the previous breaking event affect the formation of a new vortex structure via
interaction among the vortices in the instantaneous field, the resulting aperiodic
strains yield different vortex substructures over successive breaking events, resulting
in varying turbulent flows at every breaking event. This variation may explain why
intermittent turbulent flows occur at certain fixed points under successive breaking
waves (cf. Cox & Kobayashi 2000).

Obliquely descending eddies have been identified with the vortex loops (or rib
vortices) stretched in the braid, which envelop adjacent primary two-dimensional
vortices. In a plunging breaker, vortex loops that initially emerge in the saddle region
are obliquely stretched from the bottom part of a primary vortex toward the upper
part of a successive primary vortex formed at the next plunging phase, leading to
the rib structure. The inclination angle of the obliquely decending eddy (the vortex
loop) increases from the first to the second plunging phase, but decreases after that.
The evolution of the obliquely descending eddy is evidently associated with transition
of the wave shape, the rebounding height of the jet, and the spacing between the
plunging points (or relative positions of the primary vortices). The rib vortices tend to
lie longitudinally along on the bottom after the wave passes, since the bottom inhibits
vertical evolution of the vortices. These longitudinal rib vortices may be those that
Christensen & Deigaard (2001) sometimes detected, instead of obliquely descending
eddies.

In a spilling breaker, although consecutive plunges of its relatively smaller jets
successively form an array of weaker primary vortices, three-dimensional instability
occurs in the saddle region between its vortices in much the same way as for a
plunging breaker. The spanwise vorticity undulation is amplified in this saddle region,
and the resulting vortex loop is consecutively stretched in a sparser vortex field with
less vorticity interaction, so that the obliquely descending eddy remains much longer
than in a plunging breaker.

The trajectory of the fluid particles in the obliquely descending eddy typically
exhibits vortex motion. Entrained bubbles, which are otherwise buoyant but happen
to encounter an obliquely descending eddy, may be trapped within the vortex for a
long time. The obliquely descending eddies tend to be displaced downward beneath
the lowered surface behind the breaking wave, so trapped bubbles near the vortex
cores may be taken to significant depths.

Financial support for this study was provided by JSPS Grants-in-Aid Scientific
Research. R. J.H. was partly supported by a UBD Research Grant. The authors
would also like to thank Professor Philip L.-F. Liu and an anonymous referee, for
comments that led to the discussions in Appendix A and Appendix B, respectively.
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Appendix A. Validation of the wave-breaking model
The validity of the present wave-breaking model has previously been examined,

with respect to the similarity of the computed breaking wave shape with experiment
(Watanabe & Saeki 1999). However, further validation is probably desirable to
evaluate its accuracy in predicting wave-breaking turbulent flow, since surface shape
similarity may not necessarily ensure that local turbulence is simulated adequately.

In order to deal with time-dependence in a sequence of breaking waves, several
statistical definitions of turbulence have been proposed (cf. Petti & Longo 2001).
Turbulent velocity fluctuations, defined as deviations from phase averaging of the
velocity, have been used in many other studies (e.g. Ting & Kirby 1995, 1996; Cox &
Kobayashi 2000). Although efforts to reduce aeration effects on measured velocities
may be made, the resulting statistics may nevertheless involve uncertainty associated
with erroneous and drop-out signals due to bubbles, because strong turbulence
typically occurs in highly aerated regions. Although these influences make it difficult
to compare experiments and computation, a qualitative assessment can be made,
provided that the related errors involved are statistically negligible.

Since a filtering operation is used in LES, the computational results must be
processed appropriately in order to compare with experiment. We considered the
corresponding turbulent energy in the same manner as Sagaut (2001). Thus, the
instantaneous GS velocity ui is defined to be

ui = 〈ui〉 + ui
′, (A 1)

where the phase-averaged GS velocity is 〈ui〉, the fluctuation is ui
′. The phase-averaged

exact solution 〈ui〉 can be written as

〈ui〉 = 〈ui〉 + 〈u∗
i 〉, (A 2)

where u∗
i is the SGS velocity. Since the exact velocity is written ui = 〈ui〉 + u′

i , the
turbulent energy k = 〈u′

ku
′
k〉/2 derived from (A1) and (A2) is

1
2
〈u′

ku
′
k〉 = 1

2
〈uk

′uk
′〉 + 〈q〉 − 1

2
〈u∗

k〉〈u∗
k〉 − 〈uk〉〈u∗

k〉, (A 3)

where q represents the SGS turbulent energy. Providing the phase-averaged SGS
velocity 〈u∗

i 〉 is much smaller than the other terms, we may neglect the third and
fourth terms on the right-hand side of (A3) to obtain

k ≈ 1
2
〈uk

′uk
′〉 + 〈q〉. (A 4)

The phase-averaged velocity 〈ui〉 is approximated as 〈ui〉 in this result.
The computed phase-averaged horizontal and vertical velocities and the turbulent

energy in the transition region were compared with the experimental results of
Ting & Kirby (1995). While phase averaging was taken over 102 successive waves (or
less when there is signal drop-out) for their experimental results, we considered only
30 quasi-steady waves because the computation is very time consuming. However,
we believe this is sufficient to evaluate the turbulent velocity statistics, because the
first- and second-order statistical moments of the velocity for samplings of 20, 25
and 30 waves were identical. Since Ting & Kirby (1995) estimated the turbulent
energy using a two-component laser-Doppler anemometer (LDA) on the basis of
k′ = 1.33/2(〈u′2

1 〉 + 〈u′2
3 〉) in the same manner as Svendsen (1987), we calculated k′

by using only two GS velocity components and 〈q〉 in (A4). We estimated a phase
lag between zero-up crossing phases of the computational and experimental surface
elevations at the breaking point (there is an unknown synchronized phase in the
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Figure 25. Numerical (left-hand) and experimental (right-hand) results of the phase avera-
ged (a) horizontal and (b) vertical velocities, and (c) the turbulent energy at h/hb = 0.929;
(z − ζ̄ )/h = −0.2867( ), −0.4965(− − −), −0.7063(− · −), −0.9161(· · ·), where h is the
local mean water depth, hb is h at the breaking point and ζ̄ is the mean water surface elevation
(wave set-up). [After Ting & Kirby 1995].

experiment). The phase lag was commonly used to shift all of the time series at
the different locations in the computation, in order to compare the experimental and
computational results at the same phase. The computed 〈ui〉 and k′ at the experimental
measuring points were interpolated from neighbouring numerical grids. The modulus
of the Jacobian elliptic function for an incident cnoidal wave was 0.999274, the
bottom slope was 1/35, the dimensionless breaking wave height and breaking water
depth were 0.48 and 0.39, respectively.

Figure 25 shows the phase-averaged horizontal and vertical velocities, and the
turbulent energy at the relative depth h/hb=0.929 (h is the local mean water depth
at the measuring location; hb is h at wave breaking) close to the first plunging
point. While spiky fluctuations in 〈u1〉, 〈u3〉 and k′ occur ahead of the maximum
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Figure 26. As for figure 25, but for values of h/hb = 0.857; (z − ζ̄ )/h = −0.4023( ),
−0.5550(− − −), −0.7076(− · −), −0.8603(· · ·). [After Ting & Kirby 1995].

value of 〈u1〉 in the experimental results, the computational results show smooth time
series without such fluctuations. Figure 26 shows similar comparisons at h/hb=0.857
(location between the first and second plunging points). It can be seen that the
computed phase-averaged velocities have secondary crests similar to the experimental
ones, although they appear to be somewhat lower. According to Ting & Kirby (1995),
the location where the water is pushed up by the plunging jet to form a new wave
was aerated when the secondary crest appeared in the experiment.

Turbulent energy discrepancies in the phase-averaged velocity between the first and
second crests suggest that the presence of a large number of bubbles may alter the
statistics to some extent. There can be two possible effects in a liquid phase. One
is the erroneous output signal induced at a vacuous measuring point, as mentioned
above. Although an effort may be made to correct the erroneous signal by removing
the signal drop-out, the consequent lack of data in strongly aerated regions cannot
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be overcome (Longo et al. 2002), so there is uncertainty in the turbulent statistics
(especially in higher moments or higher-order statistics).

There can also be intensification of small-scale turbulence around bubbles, via
wake effects in bubble-bubble interactions (Bunner & Tryggvason 2002a). Bunner &
Tryggvason (2002b) found the turbulent energy induced by the fluctuating motion
of buoyant bubbles increases with void fraction, and scales with the void fraction
multiplied by the square of the average bubble rise velocity. It has also been found
that the presence of bubbles in turbulent boundary layers intensifies the turbulent
energy in proportion to the void fraction (Gabillet, Colin & Fabre 2002).

In the context of breaking waves, the bubble concentration reaches 15–20 % of
the peak void fraction just after wave breaking (Cox & Shin 2003), so the turbulent
energy in initially highly aerated regions may indeed be intensified by small-scale
fluctuations in the bubble motion owing to wake effects. The quantitative difference
in the turbulent energy peaks between the computational and experimental results
appears only at the closest measuring point to the surface, where there are probably
aeration consequences for both (cf. the solid lines in figures 25c and 26c). However,
these spiky fluctuations in the turbulent energy have very short duration and small
impulse (time integral of the spiky components), and they make a much smaller
statistical contribution to the mean velocity than that due to the breaking wave
over one wave period. Thus, the spiky fluctuations due to aeration are relatively
unimportant compared with the shear turbulence due to the splashing jets, in the
overall dynamics of the breaking waves. The computational results do show the major
features in the phase-averaged velocities and the turbulent energy, so we do consider
that our wave-breaking model adequately describes the flow field with relatively large-
scale variations after wave breaking, which is the main issue discussed in this context.

Appendix B. Dynamic effects of bubbles on the vortex structures
As discussed in § 4, air bubbles appear entrained or maintained for a long time within
the cores of the large-scale vortices generated by breaking waves (cf. figure 17).
Thus, despite their buoyancy, bubbles are forced to spiral within the vortex cores
owing to the water drag and pressure gradients (cf. figure 24). Nevertheless, it might
seem that the dynamics of surf-zone breaking waves should be described as two-
phase (gas–liquid) flow with air bubbles of appropriate size distributions throughout
the splash-up cycle – but it can be shown that this rather daunting prospect is
unnecessary for understanding the major flows with relatively large-scale variations
mainly affected by the gravity-dominated flow field. In this Appendix, we consider
the extent to which bubbles may alter the local vorticity field in our computation,
and consequently deform or displace the vortex structure (cf. Sridhar & Katz 1999).

Let us consider an arbitrary volume V of fluid bounded by its moving external
fluid surface S and a collection of moving internal surfaces {SBk

, k = 1, . . . , N}
corresponding to N relatively small bubbles that remain within S. The time derivative
of the total momentum of this fluid volume is

d

dt

∫
V

ρv dτ =

∫
V

∂(ρv)

∂t
dτ +

∫
S

ρvv· dS +

N∑
k=1

∫
SBk

ρvv· dS, (B 1)

assuming no additional cavitation and hence inter alia that the normal component of
the fluid velocity coincides with the surface velocity in the surface integrals. Moreover,
these velocities coincide and are constant over each non-deforming bubble surface



324 Y. Watanabe, H. Saeki and R. J. Hosking

(and equal the particular bubble velocity), so that the bubble surface terms in (B1) are
negligible for almost spherical bubbles on the Hinze scale. The equation of motion is
simply

d

dt

∫
V

ρv dτ = F, (B 2)

where F is the total force acting on the fluid volume V (since all moving surface
contributions here are zero). Treating the bubbles as ‘mass-less’ such that they do not
contribute any (surface or body) forces, it follows that∫

V

∂(ρv)

∂t
dτ +

∫
S

ρvv· dS =

∫
S

T· dS +

∫
VT

ρg dτ −
N∑

k=1

∫
VBk

ρg dτ, (B 3)

where the terms on the right-hand side represent the surface and body forces due to
the moving fluid (T denotes the stress tensor and g is the acceleration due to gravity,

and VT = V +
∑N

k=1VBk
is the total volume of bubbly fluid under consideration).

When there is a single bubble (N = 1 in VT ), this equation is identical to equation
(A9) of Sridhar & Katz (1999), although they considered a moving bubble inside a
control volume with a fixed external boundary SE whereas in our context not only
the bubble(s), but also the external fluid surface S, moves. It is again notable that
the above equation differs from the corresponding case for single, phase fluid flow
in two terms: the buoyancy forces on the bubbles (last term) and the boundary of
integration in the first term (the bubbles move). Thus following Sridhar & Katz
(1999), the presence of a bubble alters the momentum by

�Fb = ρVB

{
Dv0

Dt
− g

}
, (B 4)

where v0 is the undisturbed flow field at the location of any bubble if the bubble
were absent, and VB is the bubble volume. Note that the additional momentum
contribution corresponds to bubble motion relative to the moving external surface S

of volume V , therefore fully entrained bubbles (bubbles which are stationary relative
to the moving volume V ) do not contribute to �Fb.

Assuming the simplest case that identical-sized bubbles are preserved and uniformly
distributed below the breaking waves in the surf zone, after filtering, equation (B4)
becomes

�Fb
total =

∫ N∑
k=1

G(x − x ′)�Fb
i (x

′, t) dx ′ ≈
∫

ρNVBG(x − x ′)

{
Dv0(x ′, t)

Dt
− g

}
dx′

≡ ραVT

{
Dv0

Dt
− g

}
, (B 5)

where α represents the void fraction.
When a wave first breaks, it is acoustically active inside the wave crest owing to

newly created bubbles – with those smaller than the Hinze scale (about 1 mm) subject
to jet and drop entrainment, and larger bubbles fragmenting in the turbulent and
sheared flow during the wave cavity collapse (Deane & Stokes 2002). Subsequently,
bubbles are no longer created during the much longer evolution of the newly formed
bubble plume, which is therefore acoustically quiescent. The void fraction of air under
deep-water breaking waves has been investigated by Lamarre & Melville (1991), and
in surf-zone breaking waves by Cox & Shin (2003), and in general it is much less
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Figure 27. (a, b) Horizontal and (b, c) vertical displacements of fluid owing to the presence of
bubbles at 20% void fraction in case 2. (a) t = tp +T/16, (b) t = tp +3T/16, (c) t = tp +T/16,
(d) t = tp + 3T/16.

than the 15–20 % peak void fraction observed above the wave trough level. However,
let us assume the void fraction throughout the surf zone is 20 %, so that the influence
of bubbles on the dynamics of the vortex structure is not under-estimated. If larger
bubbles formed during the collapse of the air pocket are provided, the Hinze scale may
represent an appropriate scale of the bubble fragmented in sheared flow. Assuming
bubble size at the Hinze scale, there are 48 bubbles in our computational cell
volume.

The displacement of a fluid element in time t is at2, where a is the acceleration
induced from (B2). Figure 27 shows the horizontal and vertical displacements due
to the presence of bubbles during the characteristic phase interval T/8 in case 2. As
Sridhar & Katz (1999) also found, the buoyancy displaces the vortex core upward,
whereas the force due to hydrodynamic pressure gradients reduces the core size and
thus increases the vorticity. It can be seen that the primary vortices induce radial water
displacement toward the vortex centre, causing a 0.4 % reduction of the vortex core
area. Assuming a steady state and ignoring viscous and turbulent diffusion during the
time T/8, a rough estimate based on the Helmholtz vortex theorem (the circulation
Γ =

∮
C

u · dx =
∫

S
ω · n dS in a vortex tube is preserved) is that the vorticity ω is
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Case δx δy δz �wave δx/�wave δy/�wave δz/�wave

1 0.0021 0.0011 0.0037 0.150 0.0140 0.0073 0.0247
2 0.0034 0.0015 0.0042 0.320 0.0106 0.0047 0.0131
4 0.0021 0.0003 0.0041 0.192 0.0109 0.0013 0.0214
5 0.0030 0.0011 0.0048 0.366 0.0082 0.0030 0.0131

Table 2. Relative displacements of a fluid element owing to bubbles and waves per T/8.

intensified by only about 0.4 %, owing to the reduction of the cross-section of the
vortex tube.

Table 2 shows displacements of fluid elements due to the presence of bubbles,
approximate displacements due to a wave for T/8, and the ratio between them for
cases with the same bottom slope. δx , δy and δz denote mean values of the maximum
streamwise, spanwise and vertical displacements, respectively. Assuming vortices under
breaking waves are transported at the mean velocity of about 0.2c, where c is the
wave speed (Ting & Kirby 1995; cf. also figures 25a and 26a), the displacement due to
a wave for T/8 is roughly determined by �wave = 0.2cT /8. Although the displacement
due to buoyancy (δz) is greater than that due to the pressure gradient in the vortex
core (δx), it is much smaller than the displacement of the primary vortices advected
by the inertial force and dynamic pressure in the breaking wave. Consequently, the
much faster generation and transformation of the vortex structures by the waves
predominates, and the bubbles are unlikely to change the overall dynamics of the
vortex structures significantly for the present cases – although they may significantly
affect modulations of local turbulence. Further investigations on the evolution of the
turbulence, and on the baroclinic generation of vorticity, are required to consider the
energy and momentum transfer more generally throughout the breaking process.
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